
ARTICLE IN PRESS
0889-9746/$ - se

doi:10.1016/j.jfl

�Correspond
E-mail addr
Journal of Fluids and Structures 22 (2006) 273–292

www.elsevier.com/locate/jfs
Spectral element modelling and analysis of a pipeline
conveying internal unsteady fluid

U. Lee�, J. Park

Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Ku, Incheon 402-751, Republic of Korea

Received 26 January 2005; accepted 17 September 2005

Available online 21 October 2005
Abstract

In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady

fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton’s principle and the principles of

fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all

considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady-state

values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic

stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of

the linearized pipe-dynamics equations. The fast Fourier transform (FFT)-based spectral dynamic analyses are

conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic

characteristics and the internal fluid transients of an example pipeline system.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The pipelines in chemical plants, pipeline arrays in steam generators, oil pipelines, pump discharges, propellant fluid

lines of liquid-filled rockets, and human circulation are typical examples which are used for the transport of high

velocity pressured fluids. The time-varying conditions imposed by pump or valve operations may change the internal

fluid field. Since the internal fluid keeps interacting with the pipe wall, the changes in the fluid field will keep changing

the dynamic behavior of a pipeline system. Conversely, the change in the dynamic behavior of the pipeline system will

change the internal fluid field. Sometimes such a structure–fluid interaction phenomenon may result in serious

vibrations to cause structural failures. Therefore, it is very important to accurately predict the structural dynamic

characteristics of a pipeline and the fluid transients inside of the pipeline during the early design phase. For this, one

may need more accurate and realistic pipe-dynamics theory in which the structure–fluid coupling is taken into account,

together with using a more accurate solution method.

There have been extensive studies on the modeling and analysis of the flow-induced vibrations of pipeline systems

over the past half-century: an extensive review on this subject can be found in Paı̈doussis and Li (1993). Ashley and

Haviland (1950) was the first to consider the internal flow-induced transverse vibration of a pipeline. Since Housner
e front matter r 2005 Elsevier Ltd. All rights reserved.
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(1952) took into account the Coriolis acceleration of the internal fluid, numerous modified and improved pipe-dynamics

theories have been appeared in the literature. They include the linear theories, for instance, by Nemat-Nasser

et al. (1966), Stein and Tobriner (1970), Chen (1971), Hill and Davis (1974), Paı̈doussis et al. (1986), and Lesmez et al.

(1990), and the nonlinear theories, for instance, by Semler et al. (1994), Lin and Tsai (1997), Jensen (1997), Zhang et al.

(1999), Öz (2001), Lee and Chung (2002). In most existing pipe-dynamics theories, the structural vibration of the

pipeline itself has been the main concern and the transient dynamics of internal fluid, which should be coupled with the

structural vibration, has been neglected. Mostly, the effect of internal fluid on the pipeline vibration has been taken into

account by considering the internal fluid velocity or pressure simply as a known parameter, rather than unknown

variables.

To consider the coupling between the pipeline vibration and unsteady internal flow, Lee et al. (1995) derived a set of

coupled pipe-dynamics equations for the axial, radial, and transverse vibrations of pipeline, as well as for the transients

of unsteady internal fluid pressure and velocity. The coupled pipe-dynamics equations were further generalized by

including the circumferential strain effect caused by the internal fluid pressure (Lee and Kim, 1999) and, later on, by

including the radial shell vibration and initial axial tension (Gorman et al., 2000). Recently, the vibration of an artery-

like tube conveying pulsatile fluid flow was studied by Zhang et al. (2002), and later they showed that the effect of

external vibration on the fluid flow rate and pressure in the tube is small (Zhang et al., 2003). The intensive review on

the fluid–structure interactions for the slender structures and axial flow can be found in the two-volume book by

Paı̈doussis (1998, 2003).

In the literature, various solution methods have been applied to the pipe-dynamics problems: the classical modal

analysis (Housner, 1952; Lee et al., 1995; Jensen, 1997), the Galerkin method (Nemat-Nasser et al., 1966; Chen, 1971;

Paı̈doussis et al., 1986; Lee and Chung, 2002), the Fourier and Laplace transform method (Stein and Tobriner, 1970),

the transfer matrix method (Lesmez et al., 1990), the finite element method (FEM) (Hill and Davis, 1974; Lin and Tsai,

1997; Zhang et al., 1999), the finite difference method (Gorman et al., 2000), the method of characteristics (Gorman et

al., 2000), the method of multiple scales (Öz, 2001), and the wave approach (Koo and Park, 1998).

The vibrating shape of a structure varies as the frequency of vibration varies. Thus, the conventional finite element

model formulated by using the (frequency-independent) polynomial shape functions may require the subdivision of a

structure element into finer elements in order to improve the solution accuracy, especially at high frequency. However,

if the frequency-dependent (dynamic) shape functions are adopted to formulate the finite element model, such a finer

subdivision may not be necessary. This idea leads to the exact dynamic stiffness matrix method (Banerjee, 1997).

Because the exact dynamic stiffness matrix is the stiffness matrix formulated in the frequency-domain, they can be

readily assembled by using the exactly same method that used in the conventional FEM.

In the literature, the fast Fourier transform (FFT)-based dynamic stiffness matrix method is often named spectral

element method (SEM) [e.g., Doyle (1997), Lee et al. (2000), Lee (2004)]. Because the exact dynamic stiffness matrix is

formulated from the exact dynamic shape functions which satisfy the governing equations of motion, it represents the

dynamic behavior of a structural element exactly. Thus, the SEM is often justifiably referred to as an exact solution

method (Banerjee, 1997; Doyle, 1997; Lee, 2004). Accordingly, in contrast with the conventional FEM, the SEM

enables one to use only one finite element for a uniform structural member, regardless of its length, without requiring

any further subdivision of the structural member to improve the solution accuracy. This may reduce the number of total

degrees of freedom (dof) to significantly lower the computation cost. Lee and Oh (2003) seems to be the first to apply

the SEM to the transverse and axial vibrations of a pipeline conveying internal steady fluid. To the authors’ best

knowledge, the SEM application to the pipeline conveying unsteady flow has not yet been reported in the literature.

Thus, the purposes of the present paper are (i) to develop a spectral element model for the pipeline systems conveying

internal unsteady fluid, and (ii) to conduct the FFT-based spectral element analysis to investigate the structural

dynamic characteristics and the internal fluid transients of an example pipeline problem.
2. Pipe-dynamics equations

We consider a straight pipeline subject to a small amplitude vibration. Fig. 1 shows an infinitesimal pipe-fluid element

that can be decomposed into the pipeline element and the fluid element (control volume). In Fig. 1, w(x, t) and u(x, t)

are the transverse and axial displacements of the pipeline, respectively, and p(x, t) and c(x, t) are the fluid pressure and

velocity, respectively. The flow-induced resultant normal and tangential forces acting on the pipe wall are indicated by

N and tS, respectively, where t is the shear stress due to the fluid friction and S is the inner perimeter of pipeline. As

shown in Fig. 1(a), the straight pipeline can be assumed to be initially inclined with the angle y (deg) with respect to the

ground. The acceleration of gravity, of which direction is perpendicular to the ground, is represented by g.
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Fig. 1. Free-body diagrams for the (a) pipeline element and (b) fluid elements.
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The equations of motion for a pipeline and the relevant boundary conditions can be derived from Hamilton’s

principle:Z t1

t2

ðdT � dU þ dW Þdt ¼ 0. (1)

The kinetic energy T and the potential energy U for the pipeline are given by

T ¼
mp

2

Z L

0

ð _u2 þ _w2Þdx,

U ¼
EAp

2

Z L

0

To

EAp

þ u0 þ
1

2
u0

2
þ

1

2
w0

2

� �� �2
dxþ

EIp

2

Z L

0

w00
2
dx, ð2Þ

where the overdot and prime denote the derivatives with respect to the time t and spatial coordinate x, respectively. E is

the Young’s modulus and To is the constant axial tension. L, Ap, Ip, and mp are the length, the cross-sectional area, the

second moment of area, and the mass density per length of the pipeline, respectively.

The total virtual work dW, done by the flow-induced forces acting on the pipe wall and the resultant forces and

moments applied at the boundaries, is given by

dW ¼

Z L

0

ðtS þNw0Þduþ ðtSw0 �NÞdw½ �dx

þ ðT1 � ToÞduð0Þ þ ðT2 þ ToÞduðLÞ þM1dw0ð0Þ

þM2dw0ðLÞ þ V1dwð0Þ þ V2dwðLÞ, ð3Þ

where M1, V1 and T1 are the resultant moment, the transverse shear force, and the axial force applied at the inlet

boundary x ¼ 0, respectively, whereas M2, V2 and T2 are those applied at the outlet boundary x ¼ L.

Introducing Eqs. (2) and (3) into Hamilton’s principle and integrating by parts gives the equations of motion for the

transverse and axial vibrations of the pipeline as

EIpw0000 � Tow00 þmp €w� tSw0 þN ¼ 0,

ðEAp þ ToÞu
00 �mp €uþ tS þNw0 ¼ 0 ð4Þ

with the boundary conditions at x ¼ 0 as

M 0ð Þ ¼M1 or w0ð0Þ ¼ 0,

V 0ð Þ ¼ V1 or wð0Þ ¼ 0,

T 0ð Þ ¼ T1 or uð0Þ ¼ 0 ð5Þ

and at x ¼ L as

MðLÞ ¼M2 or w0ðLÞ ¼ 0,

V ðLÞ ¼ V2 or wðLÞ ¼ 0,

TðLÞ ¼ T2 or uðLÞ ¼ 0, ð6Þ
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where

MðxÞ ¼ EIpw00ðxÞ,

V ðxÞ ¼ �EIpw000ðxÞ þ Tow0ðxÞ,

TðxÞ ¼ ðEAp þ ToÞu
0ðxÞ. ð7Þ

By applying Newton’s law of motion to the control volume (fluid element) shown in Fig. 1(b), the momentum

equations of fluid can be derived as

ðpAÞ0 þNw0 þ tS þmwðgX þ €uþ _cþ cc0 þ c _u0Þ ¼ 0,

ðpAw0Þ0 �N þ tSw0 þmwðgY þ €wþ 2c _w0 þ _cw0 þ c2w00 þ cc0w0Þ ¼ 0, ð8Þ

where mw is the fluid mass density per length, gX ¼ g sin y and gY ¼ g cos y. Since the gravity of fluid will become

important when the pipeline is inclined as shown in Fig. 1, the gravity effect is included in the momentum equations of

the fluid, while it is neglected in the dynamic equations of motion for the pipeline.

Similarly, by applying the law of mass conservation to the control volume, the continuity equation of the fluid can be

expressed as

_pAþmwa2ðc0 � 2n _u0Þ ¼ 0, (9)

where a is the wave speed of fluid defined by

a2 ¼
EvEt

rwðEvDþ EtÞ
. (10)

In Eq. (10) D and t are the inner diameter and thickness of the pipeline, respectively, and rw and Ev are the mass density

and bulk modulus of the fluid, respectively.

One may readily eliminate the fluid–structure interaction forces N and tS by properly combining Eqs. (6) and (8) and

using the relation (Hansen, 1967)

tS ¼ mw

f

2D
c2, (11)

where f is the Darcy–Weisbach friction factor. Furthermore, neglecting the convective terms, the small nonlinear terms

and the static transverse deflection due to gravity on the fluid may give two equations of motion for the pipeline:

EIpw00 00 þ pA� To þmwc2
� �

w00 þ p0Aw0 þmwð2c _w0 þ _cw0 þ cc0w0Þ þm €w ¼ 0,

ðEAp þ ToÞu
00 �mp €uþmwgY w0 þmw

f

2D
c2 ¼ 0 ð12Þ

and two fluid dynamics equations for the internal fluid:

_pAþ a2mwðc
0 � 2n _u0Þ ¼ 0,

p0AþmwgY w0 þmw
f

2D
c2 þmw gX þ €uþ _cþ cc0 þ c _u0

� �
¼ 0, ð13Þ

where m ¼ mp þmw. The two fluid dynamics equations, Eq. (13), can be combined to obtain a wave equation for the

fluid velocity c. Eq. (13) can be then replaced by

c00 �
1

a2
_cc0 �

1

a2
c_c0 �

1

a2
€c�

f

a2D
c _c�

gY

a2
_w0 � 2n _u00 �

1

a2
_c _u0 �

1

a2
c €u0 ¼ 0,

_pAþ a2mwðc
0 � 2n _u0Þ ¼ 0. ð14Þ

Eqs. (12) and (14) represent the coupled, nonlinear pipe-dynamics equations for the pipeline conveying internal

unsteady fluid.

Now, the coupled, nonlinear pipe-dynamics equations will be linearlized about the steady state of internal fluid. Thus,

the fluid velocity and pressure are assumed as follows:

cðx; tÞ ¼ co þ cd ðx; tÞ,

pðx; tÞ ¼ po þ pd ðx; tÞ, ð15Þ

where cd ðx; tÞoco and pd ðx; tÞopo represent the small perturbations with respect to constant steady-state values co and

po, respectively. Substituting Eq. (15) into Eqs. (12) and (14) and neglecting small nonlinear terms may give the linear,
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semi-coupled pipe-dynamics equations as follows:

EIpw00 00 þ ðpoA� To þmwc2oÞw
00 þ 2mwco _w

0 þm €w ¼ 0, (16a)

ðEAp þ ToÞu
00 �mp €uþmwgY w0 þmw

f

D
cocd þmw

f

2D
c2o ¼ 0, (16b)

c00d �
co

a2
_c0d �

f

a2D
co _cd �

€cd

a2
�

gY

a2
_w0 � 2n _u00 �

co

a2
€u0 ¼ 0, (16c)

_pdAþ a2mwðc
0
d � 2n _u0Þ ¼ 0. (16d)

One may see from Eq. (16), that the transverse displacement w(x, t) and the perturbed fluid pressure pd(x, t) are

completely decoupled from the other variables, the axial displacement u(x, t) and the perturbed fluid velocity cd(x, t).

Thus, once w(x, t) is determined from Eq. (16a), u(x, t) and cd(x, t) can be solved from two coupled equations Eqs. (16b)

and (16c), followed by determining pd(x, t) from Eq. (16d).
3. Formulation of spectral element matrix

The general solutions of Eq. (16) can be assumed in the spectral forms (Doyle, 1997; Lee, 2004)

wðx; tÞ ¼
XN

n¼1

W nðxÞe
iont; uðx; tÞ ¼

XN

n¼1

UnðxÞe
iont;

cd ðx; tÞ ¼
XN

n¼1

CnðxÞe
iont; pd ðx; tÞ ¼

XN

n¼1

PnðxÞe
iont; ð17Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

and on ¼ 2pn=T(n ¼ 1; 2; . . . ;N) represent the discrete frequencies: T is the period (i.e., time window)

and N is the total number of spectral components to be considered in the FFT-based spectral analysis. In Eq. (7),

Wn(x), Un(x), Cn(x) and Pn(x) represent the spatially dependent spectral components (or Fourier coefficients) of w(x,t),

u(x,t), cd(x,t) and pd(x,t), respectively. Once the spectral components Wn(x), Un(x), Cn(x) and Pn(x) are computed, the

vibration responses in the time-domain (i.e., w(x,t), u(x,t), cd(x,t) and pd(x,t)) can be reconstructed by summing all

computed spectral components, as self-explained by Eq. (17). This reconstruction process can be performed very

efficiently by using the FFT algorithm. The summation and the subscript n used in Eq. (17) are so obvious that they will

be omitted in the following for brevity.

Substituting Eq. (17) into Eq. (16) yields

a1W 00 00 þ a2W 00 þ a3ioW 0 � a4o2W ¼ 0,

b1U 00 � b2o2U þ b3W 0 þ b4C þ b5 ¼ 0,

C00 þ c1ioC0 þ ðc2io� c3o2ÞC þ c4ioW 0 þ c5ioU 00 � c1o2U 0 ¼ 0,

ioPþ d1ðC
0 þ c5ioU 0Þ ¼ 0, ð18Þ

where

a1 ¼ EIp; a2 ¼ poA� To þmwc2o; a3 ¼ 2mwco; a4 ¼ m,

b1 ¼ EAp þ To; b2 ¼ �mp; b3 ¼ mwgY ; b4 ¼ mwcof =D; b5 ¼ mwc2of =2D,

c1 ¼ �co=a2; c2 ¼ �cof =ða2DÞ; c3 ¼ �1=a2; c4 ¼ �gY=a2; c5 ¼ �2n,

d1 ¼ rwa2. ð19Þ

In general, the spectral element matrix is formulated from the homogeneous governing equations (Doyle, 1997; Lee,

2004), which can be reduced from Eq. (18) as

a1W 00 00 þ a2W 00 þ a3ioW 0 � a4o2W ¼ 0,

b1U 00 � b2o2U þ b3W 0 þ b4C ¼ 0,

C00 þ c1ioC0 þ ðc2io� c3o2ÞC þ c4ioW 0 þ c5ioU 00 � c1o2U 0 ¼ 0,

ioPþ d1ðC
0 þ c5ioU 0Þ ¼ 0. ð20Þ
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The general solutions of Eq. (20) are assumed as

W ðxÞ ¼ W̄eikx; UðxÞ ¼ Ūeikx,

CðxÞ ¼ C̄eikx; PðxÞ ¼ P̄eikx, ð21Þ

where k is the wavenumber.

Substituting Eq. (21) into Eq. (20) gives an eigenvalue problem as

K11 0 0

K21 K22 K23

K31 K32 K33

2
64

3
75

W̄

Ū

C̄

8><
>:

9>=
>; ¼

0

0

0

8><
>:

9>=
>;, (22)

where

K11 ¼ a1k4
� a2k2

� a3ok � a4o2; K21 ¼ b3ik,

K22 ¼ �b1k2
� b2o2; K23 ¼ b4,

K31 ¼ �c4ok; K32 ¼ �ðc5iok2
þ c1o2ikÞ,

K33 ¼ �k2
� c1ok þ c2io� c3o2. ð23Þ

From the condition for the existence of nontrivial solutions of Eq. (22), one may obtain the dispersion equations as

a1k4
� a2k2

� a3ok � a4o2 ¼ 0,

b1k4
þ b1c1ok3

þ fðb2 þ b1c3Þo2 � iðb1c2 � b4c5Þogk
2

þ ðb2c1o3 þ ib4c1o2Þk þ b2ðc3o� ic2Þo3 ¼ 0. ð24Þ

The first dispersion equation, Eq. (24a), will provide four wavenumbers k1, k2, k3 and k4 for the bending vibration

modes, whereas the second dispersion equation, Eq. (24b), will provide four wavenumbers k5, k6, k7 and k8 for the axial

vibration–fluid velocity coupling modes.

Using the eight wavenumbers obtained from Eq. (24), the general solutions of Eq. (20) can be expressed as

W ðxÞ ¼
X4
j¼1

W̄ je
ikj x ¼ ½ewðxÞ�f/wg,

UðxÞ ¼
X4
j¼1

Ū je
ikjþ4x ¼ ½eucðxÞ�f/ucg,

CðxÞ ¼
X4
j¼1

ajŪ je
ikjþ4x ¼ ½eucðxÞ�½Duc�f/ucg, ð25Þ

where

½ewðxÞ� ¼ eik1x eik2x eik3x eik4x
� 	

,

½eucðxÞ� ¼ eik5x eik6x eik7x eik8x
� 	

,

Duc½ � ¼ ½diagðajÞ� ðj ¼ 1; 2; 3; 4Þ ð26Þ

and {/w} and {/uc} are constant vectors. In Eq. (26), [diag(aj)] denotes the diagonal matrix and its jth component is

defined by

aj ¼ �
K22ðk ¼ kjþ4Þ

K23ðk ¼ kjþ4Þ
ðj ¼ 1; 2; 3; 4Þ. (27)

Now, consider a finite pipeline element of length l. The spectral components of the nodal dof (simply, spectral nodal

dofs), shown in Fig. 2, are defined by

W ð0Þ ¼W 1; W ðlÞ ¼W 2,

Yð0Þ ¼ Y1; YðlÞ ¼ Y2,

Uð0Þ ¼ U1; UðlÞ ¼ U2,

Cð0Þ ¼ C1; CðlÞ ¼ C2,

Pð0Þ ¼ P1; PðlÞ ¼ P2, ð28Þ



ARTICLE IN PRESS

l 

 

V1, W1 V2, W2

T2, U2
C2, P2

T1, U1
C1, P1

M2, Θ2M1, Θ1  

Fig. 2. Sign convention for the pipeline element.

U. Lee, J. Park / Journal of Fluids and Structures 22 (2006) 273–292 279
where YðxÞ ¼W 0ðxÞ denotes the slope. Substituting Eq. (25) into Eq. (28) gives the relationships between the spectral

nodal degrees of freedom (dofs) vectors and the constants vectors as follows:

fdwg ¼ ½HwðoÞ�f/wg;

ducf g ¼ ½HucðoÞ�f/ucg;
(29)

where

fdwg ¼ W 1 y1 W 2 y2

 �T

;

fducg ¼ fU1 U2 C1 C2 g
T;

½HwðoÞ� ¼

1 1 1 1

ik1 ik2 ik3 ik4

e1 e2 e3 e4

ik1e1 ik2e2 ik3e3 ik4e4

2
666664

3
777775,

½HucðoÞ� ¼

1 1 1 1

e5 e6 e7 e8

a1 a2 a3 a4

a1e5 a2e6 a3e7 a4e8

2
666664

3
777775 ð30Þ

with

ej ¼ eikj l ðj ¼ 1; 2; 3; . . . ; 8Þ. (31)

From Eq. (29), one may obtain

f/wg ¼ ½HwðoÞ��1 dwf g;

f/ucg ¼ ½HucðoÞ��1 ducf g:
(32)

Substituting Eq. (32) into Eq. (25) gives

W ðxÞ ¼ ½Nwðx;oÞ�fdwg,

UðxÞ ¼ ½Nuðx;oÞ�fducg,

CðxÞ ¼ ½N cðx;oÞ�fducg, ð33Þ

where [Nw], [Nu] and [Nc] are the dynamic (frequency-dependent) shape function matrices defined by

½Nwðx;oÞ� ¼ ½ewðxÞ�½HwðoÞ��1,

½Nuðx;oÞ� ¼ ½eucðxÞ�½HucðoÞ��1,

½Ncðx;oÞ� ¼ ½eucðxÞ�½HucðoÞ�½HucðoÞ��1. ð34Þ

The variational approach will be used to formulate the spectral element matrix by using the displacement and fluid

field given by Eq. (33). The weak form statements of the first three equations of Eq. (18) are given byZ l

0

fa1W 00dW 00 þ ða2 þ ToÞW
00dW þ ToW 0dW 0 þ a3ioW 0dW � a4o2WdWgdx

� V2dW 2 � V1dW 1 �M2dY2 �M1dY1 ¼ 0,
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R l

0ðb1U 0dU 0 þ b2o2UdU � b3W 0dU � b4CdU � b5dUÞdx

�T2dU2 � T1dU1 ¼ 0;R l

0
f�C0dC0 þ c1ioC0dC þ ðc2io� c3o2ÞC þ c4ioW 0dC�c5ioU 0dC0 � c1o2U 0dC

�
dx

þðioP2=d1ÞdC2 � ðioP=d1ÞdC1 ¼ 0:

(35)

where Mi, Vi and Tiði ¼ 1; 2Þ represent the spectral components of the resultant moments, the transverse shear forces

and the axial forces, respectively, at two nodes x ¼ 0 and x ¼ l, as defined by Eq. (5). Similarly, W i;Yi;Ui;Ci and

Piði ¼ 1; 2Þ represent the spectral nodal dofs at two nodes x ¼ 0 and x ¼ l, as defined in Eq. (28). Eq. (18d) has been

used to obtain Eq. (35c).

Substituting Eq. (34) into Eq. (35) and taking some manipulation gives a matrix form of equation as

½SðoÞ�fdg ¼ ff g, (36)

where {d} and {f} are the spectral nodal dofs vector and the spectral nodal forces vector, respectively, defined by

fdg ¼

W 1

y1
W 2

y2
U1

U2

C1

C2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

; ff g ¼

V1

M1

V2

M2

T1

T2

�ioP1=d1

ioP2=d1

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

þ

0

0

0

0

R l

0 b5 Nu½ �
T dx

8>>><
>>>:

9>>>=
>>>;

4�1

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

, (37)

and [S(o)] is the spectral element matrix defined by

½SðoÞ� ¼
s11 0

s21 s22

" #
, (38)

where

½s11� ¼

Z l

0

fa1½N
00
w�

T½N 00w� þ ā2½Nw�
T½N 00w� þ To½N

0
w�

T½N 0w� þ a3io½Nw�
T½N 0w�

�a4o2½Nw�
T½Nw�

�
dx,

½s21� ¼

Z l

0

ð�b3½Nu�
T½N 0w� � c4io½N c�

T½N 0w�Þdx,

½s22� ¼

Z l

0

fb1½N
0
u�
T N 0u
� 	

þ b2o2 Nu½ �
T Nu½ � � b4 Nu½ �

T Nc½ � þ N 0c
� 	T

N 0c
� 	

� c1io½Nc�
T½N 0c�

� ðc2io� c3o2Þ½Nc�
T½Nc� þ c5io½N 0c�

T½N 0u� þ c1o2½N c�
T½N 0u�gdx, ð39Þ

where

ā2 ¼ poAþmwc2o. (40)

In Eq. (38), [s12] ¼ 0, which simply implies that the transverse displacement is not coupled with the axial displacement

and fluid velocity. If the fluid-related terms (2nd and 4th terms) are removed from [s11], one may confirm that

the symmetric spectral element matrix for the bending vibration of a simple beam without internal flow is recovered

(Lee, 2004).

As an important advantage of the spectral-element-matrix-based SEM, as mentioned previously, only one finite

element will be enough for a uniform pipeline, regardless of its length, to obtain accurate dynamic characteristics of the

pipeline conveying internal unsteady fluid. However, if the pipeline is not uniform in terms of geometry or material

properties, then the pipeline needs to be divided into more finite elements. In this case, the spectral element matrices

should be assembled and this can be done by using the same assembly techniques as used in the conventional FEM. The

major difference is the addition of a Do-Loop over all discrete frequencies. Thus, if N spectral components are

considered in the spectral element analysis as shown in Eq. (17), the problem can be thought as a sequence of N pseudo-

static problems.
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Assembling the spectral element Eq. (36) and then applying the appropriate boundary conditions will provide a

global system dynamic equation (in frequency domain) as

½SgðoÞ�fdgðoÞg ¼ ff gðoÞg, (41)

where {fg} is the global spectral nodal forces vector, {dg} is the global spectral nodal dof vector, and [Sg(o)] is the global
dynamic stiffness matrix. The natural frequencies onat of a pipeline system can be obtained from the condition that

determinant of [S(o)] should vanish at the natural frequencies, that is

SðonatÞ
�� �� ¼ 0. (42)
4. Numerical results and discussions

As illustrative examples, two straight pipelines simply supported at both ends are considered. As shown in Fig. 3,

pipeline A and pipeline B are both horizontal with respect to the ground, i.e., y ¼ 01, subject to same axial tension

To ¼ 82N, and have exactly the same geometry. That is, they have a length L ¼ 6000mm, internal diameter

D ¼ 32:12mm, and thickness t ¼ 1:4mm. Pipeline A has uniform material properties: Young’s modulus E1 ¼ 117GPa,

Poisson’s ratio n1 ¼ 0:285 and mass density per unit length mp1 ¼ 1:318 kg=m. Pipeline B consists of two materials: the

first-half of the pipeline has material properties (E1, n1 and mp1) which are same as those for pipeline A, and the second

half of the pipeline B has material properties E2 ¼ 73GPa, n2 ¼ 0:330 and mp2 ¼ 0:413kg=m. The mass density of fluid

per unit length is mw ¼ 0:81kg=m.

The accuracy of the present spectral element model is evaluated first by comparing the eigenfrequencies obtained by

using the present SEM with those obtained by the conventional FEM and the exact theory from Blevins (1979). The

finite element model used to obtain the FEM results is summarized in Appendix A.

Table 1 compares the eigenfrequencies of the first four bending vibration modes, the first axial vibration mode, and

the first fluid mode for pipeline A, all obtained by the present SEM, FEM, and the exact theory from Blevins (1979).

Because pipeline A is uniform, only one finite element is used to obtain the SEM results. On the other hand, the FEM

results are improved by increasing the total number of finite elements from 10 to 100, as shown in Table 1. When the

(steady-state) flow velocity is co ¼ 0m=s, the eigenfrequencies obtained by the present SEM are exactly identical to the

exact theoretical solutions. One can observe from Table 1 that, at all flow velocities, the FEM results tend to converge

to the SEM results as the total number of finite elements used in FEM is increased. For the present example problem,

one has to use more than 50 finite elements in the FEM to achieve the same accuracy for the fifth eigenfrequency as

achieved by the present SEM. One can also observe from Table 1 that the real parts of eigenfrequencies (i.e., natural

frequencies) are reduced in magnitude as the fluid velocity co is increased. As a result, the first natural frequency
E1, mp1, �1 

x 

y 

L/2 

ToTo 

E2, mp2, �2 

L/2 

E1, mp1, �1 

x 

y 

L 

ToTo 

(a)

(b)

Fig. 3. Example problems: a simply supported straight pipelines conveying internal unsteady fluid, where T0 ¼ 82N: (a) Pipeline A:

uniform pipeline; (b) pipeline B: nonuniform pipeline.
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Table 1

Comparison of the eigenfrequencies (Hz) for the uniform pipeline A, obtained by the present SEM, FEM and the exact theory (Blevins,

1979)

Fluid velocity (m/s) Method N oðwÞ1 oðwÞ2 oðwÞ3 oðwÞ4 oðcÞ6 oðuÞ12

0 Theory (exact) 1.47 5.89 13.26 23.57 51.98 150.73

SEM 1 1.47 5.89 13.26 23.57 51.98 150.73

FEM 10 1.47 5.89 13.27 23.61 52.03 157.39

20 1.47 5.89 13.26 23.58 51.99 150.77

50 1.47 5.89 13.26 23.58 51.98 150.74

100 1.47 5.89 13.26 23.57 51.98 150.74

5 SEM 1 1.45 5.87 13.24 23.56 51.98+0.26i 150.74+0.01i

FEM 10 1.45 5.87 13.25 23.59 52.03+0.26i 150.89+0.01i

20 1.45 5.87 13.24 23.56 51.99+0.26i 150.77+0.01i

50 1.45 5.87 13.24 23.56 51.98+0.26i 150.74+0.01i

100 1.45 5.87 13.24 23.56 51.98+0.26i 150.74+0.01i

10 SEM 1 1.37 5.81 13.18 23.50 52.00+0.47i 150.74+0.02i

FEM 10 1.37 5.81 13.19 23.54 52.03+0.47i 150.89+0.02i

20 1.37 5.81 13.18 23.50 51.99+0.47i 150.77+0.02i

50 1.37 5.81 13.18 23.50 51.98+0.47i 150.74+0.02i

100 1.37 5.81 13.18 23.50 51.98+0.47i 150.74+0.02i

20 SEM 1 1.03 5.55 12.94 23.26 51.97+0.86i 150.74+0.03i

FEM 10 1.03 5.55 12.95 23.30 52.03+0.86i 150.89+0.03i

20 1.03 5.55 12.94 23.26 51.99+0.86i 150.77+0.03i

50 1.03 5.55 12.94 23.26 51.98+0.86i 150.74+0.03i

100 1.03 5.55 12.94 23.26 51.97+0.86i 150.74+0.03i

28.65 SEM 1 0.00 5.18 12.59 22.93 52.00+1.18i 150.74+0.04i

FEM 10 0.00 5.18 12.60 22.97 52.02+1.18i 150.89+0.04i

20 0.00 5.18 12.59 22.93 51.98+1.18i 150.77+0.04i

50 0.00 5.18 12.59 22.93 51.97+1.18i 150.74+0.04i

100 0.00 5.18 12.59 22.93 51.97+1.18i 150.74+0.04i

Note: N ¼ number of finite elements; (w) ¼ bending vibration mode; (u) ¼ axial vibration mode; (c) ¼ fluid mode.

Table 2

Comparison of the eigenfrequencies (Hz) for the nonuniform pipeline B, obtained by the present SEM and FEM when co ¼ 10m=s

Fluid velocity (m/s) Method N oðwÞ1 oðwÞ2 oðwÞ3 oðwÞ4 oðcÞ6 oðuÞ12

10 SEM 2 1.34 5.97 13.34 24.09 48.45+0.46i 150.67+0.46i

FEM 10 1.34 5.97 13.35 24.13 48.50+0.46i 152.08+0.46i

20 1.34 5.97 13.34 24.09 48.46+0.46i 151.22+0.46i

50 1.34 5.97 13.34 24.09 48.45+0.46i 150.73+0.46i

100 1.34 5.97 13.34 24.09 48.45+0.46i 150.69+0.45i

Note: N ¼ number of finite elements; (w) ¼ bending vibration mode; (u) ¼ axial vibration mode; (c) ¼ fluid mode.
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becomes zero at about co ¼ 28:65m=s (denoted by cD) and a divergence instability occurs. Similarly, Table 2 compares

the eigenfrequencies for the nonuniform pipeline B, when co ¼ 10m=s. As pipeline B consists of two uniform beams of

different materials, two finite elements are used. One can also confirm that the FEM results indeed converge to the SEM

results as the total number of finite elements used in FEM is increased.

Table 3 compares the CPU times (seconds) required to compute the eigenfrequencies by the present SEM and FEM

for the uniform pipeline A and the nonuniform pipeline B, given in Tables 1 and 2, when co ¼ 10m=s. The MATLAB

function ‘eig’ is used to compute the FEM results, while a common root-finding approach is used to obtain the SEM

results. Table 3 shows that the CPU time for the FEM results increases rapidly as the number of finite elements used in

FEM increases over about 20 for the present two example pipelines.
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Fig. 4. Comparison of the transverse displacements at x ¼ L=5 in the frequency and time domains obtained by the present SEM and

FEM.

Table 3

Comparison of the CPU times (seconds) required to compute the eigenfrequencies by the present SEM and FEM for the uniform

pipeline A and the nonuniform pipeline B, given in Tables 1 and 2 when co ¼ 10m=s

Methods SEM FEM

Uniform pipeline A N 1 10 20 50

CPU time (s) 65 44 348 12 735

Nonunifrom pipeline B N 2 10 20 50

CPU time (s) 75 45 361 13 441

Note: N ¼ number of finite elements.

U. Lee, J. Park / Journal of Fluids and Structures 22 (2006) 273–292 283
The uniform pipeline A, shown in Fig. 3(a), is considered for the results given in Figs. 4–10. Fig. 4 compares the

dynamic responses of the transverse displacement obtained by the present SEM and FEM in the frequency- and time-

domains. It is assumed that the fluid velocity is co ¼ 10m=s. To excite the pipeline, a point load of 1 kN is applied at
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Fig. 5. Effect of fluid velocity on the eigenfrequencies o of the first three bending vibration modes: (a) real part of o; (b) imaginary

part of o.

U. Lee, J. Park / Journal of Fluids and Structures 22 (2006) 273–292284
x ¼ L=5 for 0.001 s. The dynamic responses are then computed at the excitation point, i.e., x ¼ L=5. Due to the

existence of the point load, two elements are used for the SEM results. It is certain from Fig. 4 that the dynamic

responses obtained by the FEM converge to the SEM results as the total number of finite elements used in the FEM is

increased. Thus, the results shown in both Table 1 and Fig. 4 may serve as proof of the high accuracy of the present

spectral element model.

Fig. 5 shows the effect of fluid velocity co on the real and imaginary parts of the eigenfrequencies for the first three

bending vibration modes. A divergence instability may occur when the imaginary part of an eigenfrequency is negative

and the real part is zero, whereas a flutter instability may occur when the imaginary part is negative, but the real part is

not zero. For the present example problem, Fig. 5 shows that the divergence instability may occur in the first bending
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Fig. 8. The axial displacement, perturbed fluid velocity and perturbed fluid pressure at x ¼ L=2 when co ¼ 10m=s: (a) axial

displacement, u; (b) perturbed fluid velocity, cd; (c) perturbed fluid pressure, pd.
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Fig. 9. Normalized root-mean-square (r.m.s.) values of the axial displacement (u), perturbed fluid velocity(cd), and perturbed fluid

pressure(pd) at x ¼ L=2 versus the fluid velocity co.
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Fig. 10. The axial displacement and the perturbed fluid velocity and pressure at x ¼ L=2 when co ¼ 10(1+0.001 sin 102pt)m/s at the

inlet of the pipeline.

U. Lee, J. Park / Journal of Fluids and Structures 22 (2006) 273–292288
mode at about co ¼ 28:65m=s (i.e., divergence velocity, cD), and the flutter instability may occur in the coupled mode of

the first and second bending modes at about co ¼ 57:33m=s (i.e., flutter velocity, cF). This type of coupled-mode flutter

can also be observed in some aeroelasticity problems (Dowell, 1995). Fig. 6 shows the time histories of the transverse

displacement at four different fluid velocities, including the divergence and flutter velocities, and Fig. 7 shows the

corresponding frequency response functions, i.e., receptances. For Figs. 6 and 7, the same point load as applied for Fig.

4 is applied to excite the pipeline and all dynamic responses are measured at x ¼ L=5. As expected, the dynamic

response indeed diverges at the divergence velocity cD, and it shows a flutter behavior at the flutter velocity cF. The small

ripples appearing in Fig. 6(c) are due to inevitable computational errors.

The axial displacement is coupled with the perturbed fluid velocity. Eq. (16) shows that the axial displacement can be

excited by the steady-state flow through the friction term mf c2o=2D, without need to apply an external excitation load.

Therefore, both the axial displacement and the perturbed fluid velocity will generate the perturbed fluid pressure

through the last equation of Eq. (16).

Fig. 8 shows the axial displacement u, the perturbed fluid velocity cd, and the perturbed fluid pressure pd, all measured

at x ¼ L=2 when co ¼ 10m=s. The root-mean-square (r.m.s.) values of u, cd, and pd are shown in Fig. 9 as the

function of fluid speed co. The r.m.s. values are computed from the corresponding time responses for 1.5 s. Fig. 9

shows that all r.m.s. values of u, cd, and pd increase exponentially, in the quite similar pattern, as the fluid speed co

increases.

When the inlet fluid velocity is controlled by co ¼ 10ð1þ 0:001sin 104ptÞm=s, the axial displacement, the perturbed

fluid velocity and the perturbed fluid pressure are shown in Fig. 10. Fig. 10 shows that all responses tend to rapidly
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increase with time. This is because the excitation frequency of the inlet fluid velocity (i.e., 52Hz) is chosen to be almost

identical to the natural frequency of the first fluid mode at co ¼ 10m=s (see Table 1) so that the resonance phenomenon

occurs. Since the rapid increase of axial displacement and internal fluid pressure may result in serious structural failures,

one may need to pay more attention whenever the inlet fluid has an excitation frequency very close to a natural

frequency of the internal fluid.
5. Conclusions

In this study, a spectral element model is developed for the straight pipelines containing internal unsteady flow. First,

a set of nonlinear, coupled pipe-dynamics equations is derived, in which the axial and transverse displacements of the

pipeline and the fluid velocity and pressure of the internal flow are all considered as independent variables. Next, the

coupled pipe-dynamics equations are linearized about the steady-state fluid pressure and velocity to derive a linear pipe-

dynamics model, as the first approximation. The spectral element model is then formulated for the linear pipe-dynamics

model by using the frequency-dependent shape functions exactly obtained from the linear pipe-dynamics equations. The

high accuracy of the present spectral element model is numerically verified in due course by comparing the

eigenfrequencies and dynamic responses obtained by the present SEM with those obtained by the conventional FEM

and exact theory. Lastly, the spectral element analysis is conducted to investigate the stability and dynamic

characteristics of an example pipeline conveying internal unsteady fluid.
Appendix A

The finite element model used in this paper is formulated by using the displacement fields and fluid fields within a

finite element of length l defined by

wðx; tÞ ¼ ½NwðxÞ�fdwðtÞg,

uðx; tÞ ¼ ½NuðxÞ�fduðtÞg,

cd ðx; tÞ ¼ ½NcðxÞ�fdcðtÞg, ðA:1Þ

where {dw(t)}, {du(t)} and {dc(t)} are the vectors defined by

fdwðtÞg ¼ fw1ðtÞ; y1ðtÞ;w2ðtÞ; y2ðtÞgT,

fduðtÞg ¼ fu1ðtÞ; u2ðtÞg
T,

fdcðtÞg ¼ fc1ðtÞ; c2ðtÞg
T ðA:2Þ

and [Nw(x)], [Nu(x)] and [Nc(x)] are the shape function matrices defined by

½NwðxÞ� ¼ Nw1ðxÞ Nw2ðxÞ Nw3ðxÞ Nw4ðxÞ½ �,

½NuðxÞ� ¼ ½Nr1ðxÞ Nr2ðxÞ�,

½NcðxÞ� ¼ ½Nr1ðxÞ Nr2ðxÞ�, ðA:3Þ

where

Nw1ðxÞ ¼ 1� 3x2=l2 þ 2x3=l3; Nw2ðxÞ ¼ x� 2x2=l þ x3=l2,

Nw3ðxÞ ¼ 3x2=l2 � 2x3=l3; Nw4ðxÞ ¼ �x2=l þ x3=l2,

Nr1ðxÞ ¼ 1� x=l; Nr2ðxÞ ¼ x=l. ðA:4Þ

By following the conventional finite element formulation procedure (Reddy, 1993), the finite element equation is

derived in the matrix form as

½M�f €dg þ ½C �f _dg þ ½K �fdg ¼ ff g, (A.5)
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where {d} and {f} are the nodal dofs vector and the nodal forces vector, respectively, defined by

fdðtÞg ¼

dwðtÞ

duðtÞ

dcðtÞ

8><
>:

9>=
>; ¼

w1ðtÞ

y1ðtÞ

w2ðtÞ

y2ðtÞ

u1ðtÞ

u2ðtÞ

c1ðtÞ

c2ðtÞ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

; ff g ¼

V1ðtÞ

M1ðtÞ

V2ðtÞ

M2ðtÞ

T1ðtÞ

T2ðtÞ

� _pd1=d1

_pd2=d1

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

þ

0

0

0

0

R l

0
b5½Nu�

T dx

8>>><
>>>:

9>>>=
>>>;

4�1

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

. (A.6)

and [M], [C] and [K] are finite element matrices given by

½M � ¼

Mww 0 0

0 Muu 0

0 Mcu Mcc

2
64

3
75,

½C � ¼

Cww 0 0

0 0 0

Ccw Ccu Ccc

2
64

3
75, (A.7)

½K � ¼

Kww 0 0

Kuw Kuu Kuc

0 0 Kcc

2
64

3
75,

where

½Mww� ¼ m

Z l

0

Nw½ �T Nw½ �dx ¼ ml

13
35

11l
210

9
70

� 13l
420

11l
210

l2

105
13l
420

� l2

140

9
70

13l
420

13
35

� 11l
210

� 13l
420
� l2

140
� 11l

210
l2

105

2
666664

3
777775,

Muu½ � ¼ mp

Z l

0

½Nu�
T Nu½ �dx ¼

mpl

6

2 1

1 2

� �
,

Mcu½ � ¼
co

a2

Z l

0

N 0c
� 	T

N 0u
� 	

dx ¼
co

a2l

1 �1

�1 1

� �
,

½Mcc� ¼
1

a2

Z l

0

Nc½ �
T Nc½ �dx ¼

l

6a2
2 1

1 2

� �
,

½Cww� ¼ 2mwco

Z l

0

Nw½ �T N 0w
� 	

dx ¼
mwco

30

�30 6l 30 �6l

�6l 0 6l �l2

�30 �6l 30 6l

6l l2 �6l 0

2
6664

3
7775, (A.8)

½Ccw� ¼
gY

a2

Z l

0

½Nc�
T½N 0w�dx ¼

gY

12a2
�6 l 6 �l

�6 �l 6 l

� �
,

½C cu� ¼ �2n
Z l

0

½N 0c�
T½N 0u�dx ¼

2n
l

�1 1

1 �1

� �
,
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½Ccc� ¼
co

a2

Z l

0

N c½ �
T N 0c
� 	

dxþ
f

D

Z l

0

N c½ �
T N c½ �dx

� �
¼

co

a2
1

2

�1 1

�1 1

� �
þ

fl

6D

2 1

1 2

� �� �
,

½Kww� ¼

Z l

0

fEIp N 00w
� 	T

N 00w
� 	

þ ðpoAþmwc2oÞ½Nw�
T N 00w
� 	

þ To N 0½ �
T
w N 0w
� 	
gdx

¼
2EIp

l3

6 3l �6 3l

3l 2l2 �3l l2

�6 �3l 6 �3l

3l l2 �3l 2l2

2
666664

3
777775þ
ðpoAþmwc2oÞ

30l

�36 �33l 36 �3l

�3l �4l2 3l l2

36 3l �36 33l
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777775

þ
To
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�36 �3l 36 �3l

3l �l2 �3l 4l2

2
666664

3
777775,

½Kuw� ¼ �mwgY
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T N 0w
� 	

dx ¼
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,

½Kuu� ¼ ðEAp þ ToÞ
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